

1 Reconstructing Antarctic winter sea-ice extent during Marine Isotope

2 Stage 5e

- 3 Matthew Chadwick^{1,2*}; Claire S. Allen¹; Louise C. Sime¹; Xavier Crosta³ & Claus-Dieter
- 4 Hillenbrand¹
- 5 ^{1.} British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- 6 ^{2.} Ocean and Earth Science, National Oceanography Centre, University of Southampton Waterfront
- 7 Campus, European Way, Southampton, SO14 3ZH, UK
- 8 ^{3.} Université de Bordeaux, CNRS, EPHE, UMR 5805 EPOC, Pessac, France
- 9 *Corresponding author: machad27@bas.ac.uk, British Antarctic Survey, High Cross, Madingley Road,
- 10 Cambridge, UK

11 Abstract

12 Environmental conditions during Marine Isotope Stage (MIS) 5e (130-116 ka) represent an important 13 'process analogue' for understanding the climatic responses to present and future anthropogenic 14 warming. The response of Antarctic sea ice to global warming is particularly uncertain due to the short length of the observational record. Reconstructing Antarctic winter sea-ice extent during MIS 5e 15 16 therefore provides insights into the temporal and spatial patterns of sea-ice change under warmer 17 than present climate. This study presents new MIS 5e records from nine marine sediment cores located south of the Antarctic Polar Front, between 55 and 70 °S. We investigate changes in winter 18 19 sea-ice extent and sea-surface temperatures between the three Southern Ocean sectors. The Atlantic 20 and Indian sector records have much more variable MIS 5e winter sea-ice extent and sea-surface 21 temperatures than the Pacific sector records. High variability in the Atlantic sector winter sea-ice 22 extent is attributed to high glacial meltwater flux in the Weddell Sea while high variability in the Indian 23 sector winter sea-ice extent results from large latitudinal migrations of the flow bands of the Antarctic 24 Circumpolar Current. Overall, these findings suggest that Pacific sector winter sea ice displays a low 25 sensitivity to warmer climates. The different variability and sensitivity of Antarctic winter sea-ice extent in the three Southern Ocean sectors during MIS 5e may have significant implications for the 26 27 Southern Hemisphere climatic system under future warming.

1. Introduction

28

- Antarctic sea ice is a critical part of the Southern Ocean (SO) and global climate system (Maksym, 2019). The vast extent of Antarctic sea ice and its huge seasonal variability (~4-18 x 10⁶ km² in the
- 31 present day) have a strong albedo-radiation feedback (Hall, 2004). Brine rejection during sea-ice
- 32 formation contributes to the production of dense shelf and bottom water masses, which, in turn,

https://doi.org/10.5194/cp-2021-102 Preprint. Discussion started: 10 August 2021 © Author(s) 2021. CC BY 4.0 License.

33 influence the strength of global overturning ocean circulation (Abernathey et al., 2016; Rintoul, 2018). Sea-ice cover also regulates heat and gas exchange between the SO and the atmosphere as well as 34 35 phytoplankton productivity by causing stratification of the upper part of the water column (Goosse 36 and Zunz, 2014) and acting as a physical barrier (Rysgaard et al., 2011) and barrier to sunlight. 37 Modern Antarctic sea-ice extent has shown a rapid decline since 2014 after four decades of gradual 38 expansion (Parkinson, 2019). Within this overall trend there is substantial spatial heterogeneity in 39 regional sea-ice trends, with decreases in the Bellingshausen and Amundsen seas concurrent with 40 increases in the Weddell Sea and Ross Sea sectors (Hobbs et al., 2016; King, 2014; Parkinson, 2019). Alongside the interannual Antarctic sea-ice trends (Parkinson, 2019), there are also trends in seasonal 41 42 variability, with the Amundsen Sea showing a substantial decrease in summer and autumn sea-ice 43 concentrations but a slight increase in winter and spring sea-ice concentrations (Hobbs et al., 2016). 44 Model simulations are unable to replicate the modern sea-ice changes without reduced regional 45 warming trends (Rosenblum and Eisenman, 2017). Difficulties in reproducing modern sea-ice trends 46 indicate the complexities of the climate dynamics that influence sea-ice extent in the SO today at 47 different timescales (Ferreira et al., 2015; Hobbs et al., 2016; King, 2014; Purich et al., 2016; 48 Stammerjohn et al., 2008). 49 Rising greenhouse gas concentrations are driving current global warming, with polar regions warming twice as fast (0.5 °C per decade) as the global average (IPCC, 2019) and Antarctic winter sea-ice extent 50 (WSIE) predicted to shrink by 24-34 % by C.E. 2100 (Meredith et al., 2019). However, the very short 51 52 length of observational records in high latitudes and together with the complexity of the climate 53 system, as mentioned above, limit our understanding of the underlying processes and ability to 54 accurately predict future changes. Past warm periods can help document the amplitude of sea-ice 55 extent reduction and, therefore, help guide our understanding of the impacts of future climate change 56 in polar regions. 57 Interglacial Marine Isotope Stage (MIS) 5e (130-116 ka) is the latest period when global mean annual 58 atmospheric temperatures were warmer than present (~1 °C; Fischer et al. (2018)) and global sea 59 levels were higher than present (~6-9 m; Kopp et al. (2009)). Summer sea-surface temperatures 60 (SSSTs) in the SO peaked at an average of 1.6 ± 1.4 °C warmer than present at and north of the modern 61 Antarctic Polar Front during this period (Capron et al., 2014; Shukla et al., 2021). MIS 5e warming is 62 primarily orbitally forced, unlike current and future anthropogenic warming which is driven by rising 63 greenhouse gas concentrations. Whilst MIS 5e cannot be considered a direct analogue for greenhouse 64 gas induced global warming it still represents an important 'process analogue' for understanding

- climate mechanisms and responses that are active under warmer-than-present climate conditions
- 66 (Stone et al., 2016).

69

70 71

72

73

74

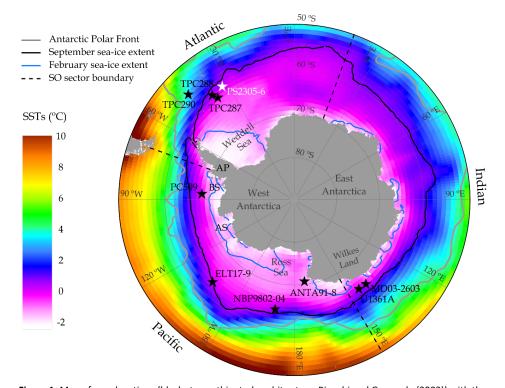


Figure 1: Map of core locations (black stars – this study, white star – Bianchi and Gersonde (2002)) with the modern (1981-2010) mean annual SSTs (COBE-SST2 dataset provided by the NOAA PSL, Boulder, Colorado, USA (https://psl.noaa.gov/)) and modern (1981-2010) median September and February sea-ice extents (data from Fetterer et al. (2017)). The black solid line is the September sea-ice extent (15 % cover) and the blue solid line is the February sea-ice extent (15 % cover). The grey solid line is the position of the modern Antarctic Polar Front (Trathan et al., 2000). The black dashed lines mark the boundaries between the three SO sectors (Atlantic, Indian and Pacific). AP – Antarctic Peninsula, BS – Bellingshausen Sea, AS – Amundsen Sea.

Diatoms preserved in SO marine sediments have been used for over 40 years to reconstruct past changes in Antarctic sea-ice extent and sea-surface temperatures (SSTs) (Armand and Leventer, 2010; Burckle et al., 1982; Thomas et al., 2019) due to the close relationship between their biogeographic distribution patterns and surface water environmental conditions (Armand et al., 2005; Crosta et al., 2005; Esper et al., 2010; Gersonde and Zielinski, 2000; Romero et al., 2005; Zielinski and Gersonde, 1997). Several previous studies have used model simulations, alongside limited data constraints from marine sediment cores, to reconstruct SO WSIE and SSTs during MIS 5e (Capron et al., 2017; Holloway et al., 2017; Holloway et al., 2018). However, there are currently no marine core records located far

- 75 enough south to constrain the predicted WSIE during MIS 5e (Chadwick et al., 2020; Holloway et al.,
- 76 2017). Due to chronological uncertainties in SO proxy records (Govin et al., 2015), previous studies
- 77 have assumed the minimum WSIE occurred synchronously around Antarctica and was coincident with
- 78 peak atmospheric temperatures in Antarctic ice cores at 128 ka (Holloway et al., 2017).
- 79 This study presents new reconstructions of SO winter sea ice (WSI) during MIS 5e from the diatom
- 80 assemblages preserved in nine marine sediment cores located south of 55 °S and south of the modern
- 81 Antarctic Polar Front (Figure 1). Quantitative and qualitative reconstructions of WSIE in the three SO
- 82 sectors; the Atlantic sector (70 °W 20 °E), the Indian sector (20 °E 150 °E) and the Pacific sector
- 83 (150 $^{\circ}\text{E} 70 ^{\circ}\text{W}$), are compared to answer the following questions:
- Did the minimum WSIE occur synchronously throughout the SO during MIS 5e?
- 85 Was the WSIE minimum concurrent with the peak Antarctic air temperatures at 128 ka?
- 86 Were the patterns in MIS 5e sea-ice change consistent between SO sectors?

2. Materials and methods

88 *2.1. Core sites*

87

- 89 The nine sediment cores used in this study are shown in Figure 1 alongside modern SSTs and sea-ice
- 90 extents. Details for each core are listed in Table 1. These cores were chosen as they contain >20 cm of

Core	Latitude (°), Longitude (°)	Water depth (m)	Cruise, Year	Ship	Core length (cm)
TPC290	-55.55, -45.02	3826	JR48, 2000	RRS James Clark Ross	1179*
TPC288	-59.14, -37.96	2864	JR48, 2000	RRS James Clark Ross	940*
TPC287	-60.31, -36.65	1998	JR48, 2000	RRS James Clark Ross	615*
MD03-2603	-64.28, 139.38	3320	MD130, 2003	R/V Marion DuFresne II	3033
U1361A	-64.41, 143.89	3459	IODP Exp. 318, 2010	R/V JOIDES Resolution	38800
ELT17-9	-63.08, -135.12	4935	ELT17, 1965	R/V Eltanin	2018
NBP9802-04	-64.20, -170.08	2696	PA9802, 1998	R/V Nathaniel B. Palmer	740
PC509	-68.31, -86.03	3559	JR179, 2008	RRS James Clark Ross	989
ANTA91-8	-70.78, 172.83	2383	ANTA91, 1990	R/V Cariboo	511

Table 1: Details of the location and recovery information for the nine marine sediment cores analysed in this study. Cores are ordered by sector (Atlantic-Indian-Pacific) and then latitude. * For each of the three TPC cores (TPC290, TPC288 and TPC287), the trigger core (TC) and piston core (PC) were spliced together to produce a composite record.

diatom rich MIS 5e sediments and are located further south than almost all existing MIS 5e sea ice records (Chadwick et al., 2020).

2.2. Diatom counts

For the diatom assemblage data, microscope slides were produced using a method adapted from Scherer (1994). Samples of 7-28 mg were exposed to 10% Hydrochloric acid to remove any carbonate, 30% Hydrogen peroxide to break down organic material and a 4% Sodium Hexametaphosphate solution to promote disaggregation and placed in a warm water bath for a minimum of 12 hours. The material was homogenised, transferred into a ~10 cm water column and allowed to settle randomly onto coverslips over a minimum of 4 hours. The water was drained away and coverslips were mounted on microscope slides with Norland Optical Adhesive (NOA 61). Slides were examined using a light microscope (Olympus BH-2 at x1000 magnification) and a minimum of 300 diatom valves were counted for each sample.

The combined relative abundance of *Fragilariopsis curta* and *F. cylindrus* (FCC) is used as a qualitative indicator of WSI presence (Gersonde and Zielinski, 2000), with abundances >3 % associated with locations south of the mean WSI edge, abundances 1-3 % found between the mean and maximum WSI edge and abundances <1 % indicative of conditions north of the maximum WSI edge (Gersonde et al., 2005; Gersonde and Zielinski, 2000).

2.3. Modern Analog Technique (MAT)

September sea-ice concentrations (SIC) and SSSTs (January to March) are estimated by applying the MAT transfer function, detailed in Crosta et al. (2020), to the MIS 5e diatom assemblages. The MAT compares the relative abundances of 33 diatom species in each MIS 5e sample to the abundances of the same species in a modern reference dataset composed of 257 surface sediment samples (modern analogs) from the SO. Modern conditions for each surface sediment sample are interpolated on a 1° x 1° grid, with SSSTs from the World Ocean Atlas 2013 (Locarnini et al., 2013) and September SIC from the numerical atlas of Schweitzer (1995). The MAT was implemented using the "bioindic" R-package (Guiot and de Vernal, 2011), with chord distance used to select the 5 most similar modern analogs to each MIS 5e assemblage. A cut-off threshold, above which any analogs are deemed too dissimilar to the MIS 5e sample, is fixed as the first quartile of random distances determined by a Monte Carlo simulation of the reference dataset (Simpson, 2007).

Quantitative estimates of September SIC and SSSTs are produced for each MIS 5e sample from a distance-weighted average of the climate values associated with the selected analogs. The reconstructed SSSTs have a Root Mean Square Error of Prediction (RMSEP) of 1.09 °C and an R² of

124125

126 127

128

0.96, and the reconstructed September SIC have a RMSEP of 9 % and an R² of 0.93. It is also possible to get no-analog conditions, where none of the reference surface sediment samples are similar enough to a MIS 5e sample, and it is therefore not possible to reconstruct September SIC and SSST for this MIS 5e sample. The reconstructed September SIC and SSST for each MIS 5e sample only use analogs below the dissimilarity threshold and therefore could be reconstructed from less than 5 analogs in some samples.

Core	SO sector	Chronology for MIS 5e	Chronological uncertainty (ka)
TPC290	Atlantic	Correlating MS from TPC290 to EDC ice core dust record combined with <i>C. davisiana</i> abundances (Pugh et al., 2009)*	± 2.58
TPC288	Atlantic	Correlating MS from TPC288 to EDC ice core dust record combined with <i>C. davisiana</i> abundances (Pugh et al., 2009)	± 2.59-2.64
TPC287	Atlantic	Correlating MS from TPC287 to MS in core TPC288 (Chadwick et al., in review)	± 2.57-2.65
MD03-2603	Indian	Correlating Ba/Al and Ba/Ti ratios from MD03-2603 to LR04 benthic oxygen isotope stack combined with diatom biostratigraphy (Presti et al., 2011)	± 2.55-2.56
U1361A	Indian	Correlating Ba/Al ratios and lithological changes to the LR04 benthic oxygen isotope stack combined with LOD <i>H. karstenii</i> (Wilson et al., 2018)	± 2.62-2.70
ELT17-9	Pacific	Combined abundance stratigraphies of <i>E. antarctica</i> and <i>C. davisiana</i> on SPECMAP age scale (Chase et al., 2003)	± 2.51
NBP9802-04	Pacific	Correlating MS from NBP9802-04 to EDC ice core dust record combined with LOD <i>H. karstenii</i> (Williams, 2017)	± 2.68
PC509	Pacific	Correlating wet bulk density (= proxy mirroring biogenic opal content) from PC509 to the LR04 benthic oxygen isotope stack (Chadwick et al., in review)	± 2.59-2.65
ANTA91-8	Pacific	Correlating MS from ANTA91-8 to the LR04 benthic oxygen isotope stack combined with LCO <i>Rouxia</i> spp. (this study; Figure 2)	± 2.60

Table 2: Summary of the location and chronologies for the nine sediment cores analysed in this study. Cores are ordered by sector (Atlantic-Indian-Pacific) and then latitude. LOD: Last Occurrence datum, LCO: Last Common Occurrence *For core TPC290 the chronology has been slightly adjusted from the published record of Pugh et al. (2009) by shifting the Termination II tiepoint to better align the magnetic susceptibility (MS) record with the dust record of the EPICA Dome C (EDC) ice core in East Antarctica (Chadwick et al. *in review*).

3. Age models

129

130

131

132

133

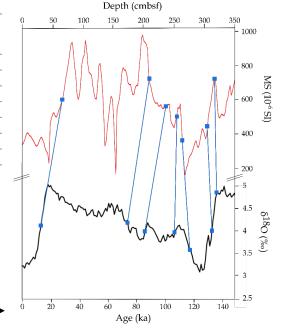
134

3.1. Published chronologies

Eight of the sediment cores presented in this study have previously published age models, summarised in Table 2. Cores TPC290, TPC288, TPC287 and NBP9802-04 are published on the EDC3 chronology, cores MD03-2603, U1361A and PC509 are published on the LR04 chronology and core ELT17-9 is published on the SPECMAP chronology. To allow for consistent comparison of timings between cores,

all cores are translated across onto the AICC2012 chronology (Bazin et al., 2013; Veres et al., 2013) using the alignment strategy in Govin et al. (2012) and the conversion tables in Lisiecki and Raymo (2005) and Parrenin et al. (2013).

Chronological uncertainties for the MIS 5e ages of samples in this study (Table 2) vary between 2.5 and 2.7 ka. The AICC2012 chronology has an uncertainty of ± 1.5 ka during MIS 5e, with an additional uncertainty of ± 1 ka arising from the translation between chronologies (Capron et al., 2014). Each core sample comprises a 0.5 cm thick slice of sediment, and therefore additional age uncertainty due to integrating over the corresponding time interval in each core needs to be taken into account (see Table 2).


3.2. ANTA91-8 chronology

The chronology for core ANTA91-8 was constructed by aligning the magnetic susceptibility (MS) to the LR04 benthic foraminifera δ^{18} O stack (Lisiecki and Raymo, 2005) using the AnalySeries software (Paillard et al., 1996). Increased supply of terrigenous glacigenic detritus from the Antarctic continent to its margin and increased dust input from Patagonia and Australia to the pelagic SO during glacial periods resulted in higher MS values during glacial periods than interglacial periods (Bareille et al., 1994; Pugh et al., 2009; Walter et al., 2000). Tie points were selected in the MS record at the boundaries of MIS stages and sub-stages (Figure 2 & Table 3). Ages for the MIS 5 sub-stage boundaries

ANTA91-8 depth (mbsf)	LR04 Age (ka)	MIS stage/sub- stage boundary
0.65	14	1-2
2.09	71	4-5a
2.39	83	5a-b
2.55	105	5c-d
2.65	116	5d-e
3.05	131.5	5e-6
3.17	136	-

Table 3: Tiepoints for ANTA91-8 chronology. The MS record for ANTA91-8 is aligned to the LR04 benthic stack using the AnalySeries software (Paillard et al., 1996).

Figure 2: Alignment between the MS from core ANTA91-8 (red) and the LR04 benthic $\delta^{18}O$ stack (black) using the AnalySeries software (Paillard et al., 1996). Blue squares and connecting lines mark the tiepoints between records.

155

156

157 158

159

160 161

162

163 164

165 166

167

168

169

170

171

172

173

174

175

176

177 178

179

180

181

182 183

152 are from Govin et al. (2009), and the ages are translated from the LR04 chronology onto the AICC2012 153 chronology.

The chronology for core ANTA91-8 presented in this study differs from chronologies previously published by Ceccaroni et al. (1998) and Brambati et al. (2002), who – on the basis of ²³⁰Thorium measurements, subsequently adjusted by matching maxima in palaeo-productivity proxies to peak interglacials – placed MIS 5e ~50 cm higher than in our age model (Supplementary Figure 1). Our new chronology assigns the broad MS minimum from 2.65-3.05 mbsf, which comprises a peak in organic carbon content (Ceccaroni et al., 1998), to MIS 5e. In contrast, both the Ceccaroni et al. (1998) and Brambati et al. (2002) age models placed this MS minimum within MIS 6 (Supplementary Figure 1), resulting in inexplicably high accumulation rates of productivity proxies during this glacial period (Ceccaroni et al., 1998). Our new chronology is corroborated by the diatom group Rouxia spp., which occurs in abundances <1 % in ANTA91-8 samples between 2.72 and 3.14 mbsf (Chadwick and Allen, 2021a). If the samples in this depth interval were deposited during MIS 6, as suggested by the Ceccaroni et al. (1998) and Brambati et al. (2002) age models, then the Rouxia spp. abundances should be >1 % (Zielinski et al., 2002).

4. Results

The September SIC values, reconstructed using the MAT, and the FCC relative abundances are presented for the 132-120 ka interval in all nine sediment cores (Figure 3). This interval is chosen to capture the sea-ice signature from both the end of glacial Termination II and during 'peak' MIS 5e. SSST data, also reconstructed using MAT, is presented over the same time interval alongside the cumulative relative abundance of the eight tropical/subtropical diatom species and groups according to Romero et al. (2005).

4.1. Sea ice

In the Atlantic sector, the three cores (TPC290, TPC288 and TPC287) display a N-S increasing trend in mean FCC relative abundances (2.1 ± 0.7 %, 3.1 ± 2.2 % and 4.7 ± 3.6 %) and Sept. SICs (19 ± 17 %, 25± 18 % and 33 ± 20 %). All three cores have low FCC relative abundances (1.2 ± 0.5 %) and Sept. SICs $(8.8 \pm 4.6 \%)$ during the 131-130 ka interval, with cores TPC288 and TPC287 both reaching their minimum MIS 5e Sept. SIC and FCC values at this time (Figure 3). Following this interval of low Sept. SIC and FCC values, all three cores show an increase to their maximum Sept. SICs (58 \pm 5 %) and FCC relative abundances (9 ± 5 %) at 127-126 ka (Figure 3). After 126 ± 2.6 ka core TPC290 displays a gradual decline in both FCC relative abundance and Sept. SIC to minimum values at 121-120 ka (Figure 3). In contrast, core TPC287 maintains high Sept. SICs (51 ± 3 %, multiple samples) throughout the 126-

Climate of the Past Discussions

120 ka period as well as high (6.2 \pm 1.8 %, multiple samples) FCC relative abundances, although they are lower than the 126 \pm 2.6 ka peak of ~15 % (single sample) (Figure 3). Core TPC288 maintains, relative to the ~130 \pm 2.6 ka minimum and ~126 \pm 2.6 ka maximum, intermediate FCC (2.9 \pm 0.6 %, multiple samples) and Sept. SIC (22 \pm 15 %, multiple samples) values throughout the 126-120 ka interval, however the Sept. SICs are much more variable than in TPC287 (Figure 3).

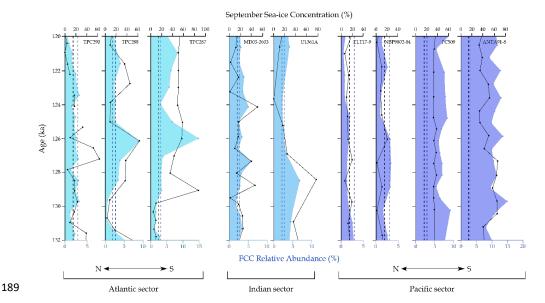


Figure 3: Downcore September SICs, determined using the MAT, and FCC relative abundances for the 132-120 ka interval in nine marine sediment cores. The blue shading indicates the FCC relative abundance, with the colour saturation varying between SO sectors. The solid black lines indicate the September SICs with the gaps in the TPC290 record caused by two samples being too dissimilar from all modern reference samples, so that the latter cannot be considered as analogs. Dashed lines mark the mean WSIE thresholds of 3 % FCC abundance (blue lines) and 15 % Sept. SIC (black lines). Within each SO sector cores are arranged from north to south.

All three Atlantic sector cores (TPC290, TPC288 and TPC287) have a strong match (p = 0.05, p < 0.01 and p < 0.01 respectively) between the FCC and Sept. SIC variations, with the notable exception of the TPC287 sample at ~129 ± 2.6 ka which has a very high Sept. SIC (86 %) but a relatively low FCC relative abundance (3.4 %). The only pronounced difference between the diatom species assemblage in this sample compared to neighbouring depths is a substantially higher relative abundance of *F. separanda* (Chadwick and Allen, 2021f), a species known to achieve highest abundances in modern sediments overlain by winter SICs above 60 % (Armand et al., 2005). There was also only a single modern analog identified for this sample and so it is likely that the high *F. separanda* relative abundance (~9 %) has biased the MAT reconstruction towards colder conditions with a greater SIC than the conditions reflected by the rest of the diatom species assemblage for that sample. Thus, the reconstructed Sept.

200 SIC for this sample is disregarded from the analysis. There are two MIS 5e samples in TPC290 (at 124.7 ± 2.6 ka and 122.8 ± 2.6 ka) for which none of the reference surface sediment samples were below 201 202 the dissimilarity threshold (see section 2.3 for details) and thus no MAT estimate of Sept. SIC (or SSST) 203 is given for those samples. 204 The two Indian sector cores (MD03-2603 and U1361A) have similar average MIS 5e FCC relative 205 abundances (3.2 \pm 1 % and 3.9 \pm 1.5 %) to each other but the average Sept. SIC (19 \pm 15 % and 27 \pm 25 206 %) is nearly 10 % higher in U1361A. However, the MIS 5e variability in Sept. SIC within each core is 207 greater than this difference between the two cores. Core MD03-2603 has three Sept. SIC maxima of >40 % (single samples) during MIS 5e, at 124.1 ± 2.6 ka, 127.3 ± 2.6 ka and 128.8 ± 2.6 ka, as well as 208 209 three minima of <5 % (single samples) at 121.5 ± 2.6 ka, 123.3 ± 2.6 ka and 129.5 ± 2.6 ka (Figure 3). 210 Contrastingly, the nearby core U1361A (Figure 1) has a maximum in MIS 5e Sept. SIC (76.4 %, single 211 sample) at 128.4 \pm 2.7 ka and a minimum (0 %, single sample) at 123.7 \pm 2.7 ka (Figure 3). Together 212 these two records suggest that the greatest MIS 5e Sept. SICs in the Indian sector occurred during the 213 129-127 ka interval and the minimum was at 123.5-121 ka (Figure 3). 214 Unlike the Atlantic and Indian sectors, the four cores from the Pacific sector (ELT17-9, NBP9802-04, PC509 and ANTA91-8) have low variability in their FCC relative abundances (1.4 \pm 0.6 %, 2.3 \pm 1 %, 5.8 215 216 \pm 0.9 % and 11 \pm 1.9 %) and Sept. SICs (13 \pm 4 %, 8.4 \pm 5.7 %, 34 \pm 2 % and 48 \pm 11 %) throughout MIS 217 5e, with no pronounced maxima or minima (Figure 3). The northernmost Pacific sector core ELT17-9 has the lowest average MIS 5e FCC relative abundance (1.4 ± 0.6 %) but the more southerly core 218 219 NBP9802-04 has the lowest average MIS 5e Sept. SIC (8.4 ± 5.7 %). The two most southerly Pacific 220 sector cores (PC509 and ANTA91-8) have the highest average MIS 5e Sept. SICs and FCC relative 221 abundances of all the cores analysed for this study.

4.2. <u>Sea-surface temperatures</u>

222

223

224

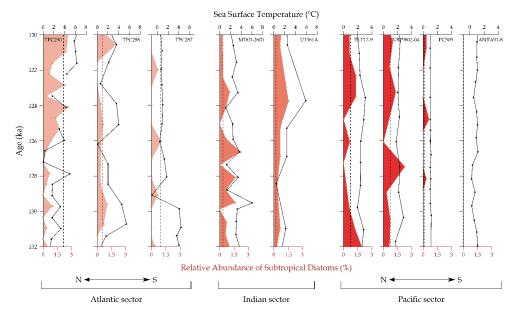
225226

227

228

229

230


231232

For the Atlantic sector cores the average MIS 5e SSSTs (3.2 ± 1.9 °C, 2.7 ± 1.6 °C and 2.2 ± 1.5 °C) show an inverse trend to Sept. SICs with higher values in more northerly cores. Both TPC288 and TPC287 have their highest MIS 5e SSSTs during the 131-129 ka interval (5 °C and 4.3 °C, respectively, multiple samples) followed by a SSST minimum at ~126 ± 2.6 ka (0.1 °C and 0.6 °C, respectively, single samples) (Figure 4). In contrast, the warmest MIS 5e SSSTs for TPC290 occur in the youngest part of the record, with an average of 6 °C in the 122-120 ka period (Figure 4). The relative abundance of subtropical diatoms in core TPC290 shows a good consistency (p < 0.01, $R^2 = 0.51$) with the SSST pattern during MIS 5e, with the highest relative abundances (1.6 ± 0.8 %, multiple samples) after 126 ± 2.6 ka (Figure 4). In the southernmost Atlantic sector core TPC287 there is a very poor match between MIS 5e SSSTs and subtropical diatom relative abundances (p = 0.3, p = 0.11). This lack of correlation is likely due to

the scarcity of subtropical diatoms at this site throughout MIS 5e, as can be seen in modern surface sediments (Chadwick, 2020), and thus a single valve can create a relative abundance peak that may be largely unrelated to the SSST trends.

Figure 4: Downcore summer (January to March) SSTs, determined using the MAT, and the relative abundance of all tropical/subtropical diatom species (Romero et al., 2005) for the 132-120 ka interval in nine marine sediment cores. The red shading indicates the relative abundance of subtropical diatom species, with the colour saturation varying between SO sectors. The solid black lines indicate the SSSTs with the gaps in the TPC290 record caused by two samples being too dissimilar from all modern reference samples, so that the latter cannot be considered as analogs. Black dashed lines mark the modern (Jan-Mar, 1980-2019) SSSTs at each core site (Hersbach et al., 2019). Within each SO sector cores are arranged from north to south.

The Indian sector cores have similar average SSSTs (2.8 ± 1.1 °C and 2.4 ± 1.7 °C). However, unlike for the Sept. SICs (Figure 3), the MIS 5e SSST minima and maxima in cores MD03-2603 and U1361A occur at different times (Figure 4). SSSTs in core U1361A fall to a minimum of 0.7 °C (single sample) at ~128 ± 2.7 ka before rising to a maximum of 5.9 °C (single sample) at ~124 ± 2.7 ka. In contrast, SSSTs in core MD03-2603 reach an early peak of 5.9 °C (single sample) at ~129.5 ± 2.6 ka and have minima of ~1 °C (single samples) at 124.1 ± 2.6 ka, 127.3 ± 2.6 ka and 128.8 ± 2.6 ka (Figure 4). Both MD03-2603 and U1361A show a strong coherence between the MIS 5e SSSTs and the subtropical diatom abundance (p = 0.02, R² = 0.34 and p <0.01, R² = 0.98 respectively).

In the Pacific sector cores, SSSTs are largely consistent throughout MIS 5e, with averages of 2.5 ± 0.3 %, 2.2 ± 0.3 %, 1.03 ± 0.03 % and 0.8 ± 0.3 % (Figure 4). Although there is very little variation in MIS 5e SSSTs in all four records, both core NBP9802-04 and core PC509 reveal maximum SSSTs (2.8 °C and 1.1

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267268

269

270

271

272

273

274

275

276

277

278

279

°C, respectively, single samples) at ~130 \pm 2.7 ka (Figure 4). None of the Pacific sector cores show a strong match between MIS 5e SSSTs and the relative abundance of subtropical diatom species. For the more southerly core PC509 this poor correlation (p = 0.65, R^2 = 0.02) is likely caused by the same scarcity of subtropical diatoms as for core TPC287 in the Atlantic sector.

5. Discussion

Both the Sept. SICs and FCC relative abundances indicate substantial differences in the pattern of MIS 5e WSIE change between the three SO sectors, most notably between the Atlantic and Pacific sectors. In all three Atlantic sector records, the FCC relative abundances and Sept. SICs indicate year-round open marine conditions and thus a poleward contraction of the mean WSIE (FCC <3 % (Gersonde and Zielinski, 2000) and Sept. SIC <15 % (Zwally et al., 2002)) during the 131-130 ka interval. This minimum is succeeded by a re-expansion of sea ice to a maximum extent in the 127-126 ka interval when all three core sites were covered by WSI. An early minimum in MIS 5e WSIE succeeded by a maximum ~4 ka later is consistent with the FCC relative abundance in nearby core PS2305-6 (Figure 1; 58.72 °S, 33.04 °W) (Bianchi and Gersonde, 2002; Chadwick et al., 2020). The MIS 5e WSIE maximum in the Atlantic sector records coincides, within chronological uncertainty, with higher global sea level (Kopp et al., 2013) and evidence for increased meltwater flux in the Weddell Sea (Chadwick et al., in review), which both indicate substantial mass loss from the Antarctic ice sheets, consistent with findings of major ice loss in the Weddell Sea sector during MIS 5e (Turney et al., 2020). Higher glacial meltwater fluxes associated with increased ice-sheet loss could therefore be a major driver of the WSIE expansion in the Atlantic sector records as less saline surface waters freeze more easily (Bintanja et al., 2013; Merino et al., 2018). The peak in FCC abundance in core TPC287 at 126 ± 2.6 ka is primarily a peak in the abundance of F. cylindrus (Chadwick and Allen, 2021f) which is affiliated with sea-ice melt and strong surface stratification (Cremer et al., 2003; von Quillfeldt, 2004) and further supports an increased glacial meltwater signal at this time. The discrepancy between Sept. SICs and FCC relative abundances at ~127 ± 2.6 ka in core TPC290 (Figure 3) is likely due to increased Chaetoceros resting spore (rs.) abundance at this time (Chadwick and Allen, 2021h). For core TPC290, there is a scarcity of modern analogs from the Scotia Sea region (Gersonde et al., 2005) and thus, the high Chaetoceros rs. abundances in MIS 5e samples are associated with modern analogs from sites along the Antarctic Peninsula, where SICs are greater than in the Scotia Sea. In the Indian sector, core MD03-2603 has an average MIS 5e Sept. SIC (25 ± 18 %) and FCC relative

abundance (3.2 ± 1 %) indicative of a location just south of the mean WSIE (Figures 3 & 5) but with

281

282

283284

285

286

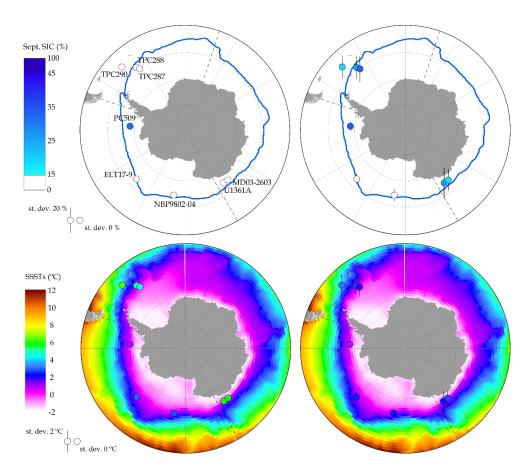


Figure 5: Maps of MIS 5e SSSTs and Sept. SICs for the nine core sites compared with the modern conditions. On all maps the SO sector boundaries are marked with dashed lines. Top left: Minimum MIS 5e Sept. SIC for each core site (coloured circles) compared to the modern (1981-2010) 15 % September sea-ice extent (blue line) (Fetterer et al., 2017). Top right: Average MIS 5e Sept. SICs (coloured circles) and standard deviations (vertical bars) at each core site compared to the modern (1981-2010) 15 % September sea-ice extent (blue line) (Fetterer et al., 2017). Bottom left: Maximum MIS 5e SSSTs for each core site (coloured circles) compared to modern (Jan-Mar, 1980-2019) SSSTs (Hersbach et al., 2019). Bottom right: Average MIS 5e SSSTs (coloured circles) and standard deviations (vertical bars) for each core site compared to modern (Jan-Mar, 1980-2019) SSSTs (Hersbach et al., 2019). Core data are given in Supplementary Table 1.

multiple maxima and minima contributing to the high variability. MIS 5e Sept. SICs and FCC relative abundances in the nearby core U1361A indicate that it was located within the seasonal sea-ice zone from 132-126 ka before the mean WSIE retreated to the south of this location (Figure 3 & Supplementary Figure 2). The different patterns in MIS 5e Sept. SIC and SSSTs between cores MD03-2603 and U1361A are likely due to the different age resolution of the samples, with two of the Sept. SIC maxima in MD03-2603 occurring in the 129-127 ka interval coincident with the U1361A Sept. SIC maximum, and likewise, two of the Sept. SIC minima in MD03-2603 occurring in the 124-121 ka period

287 concurrent with the minimum Sept. SIC in core U1361A (Figure 3). The different age resolution of samples in MD03-2603 and U1361A is primarily due to the lower sedimentation rate (Table 2) at site 288 289 U1361A, and thus a sample from this core spans more time than in core MD03-2603. 290 None of the Pacific sector cores show pronounced minima or maxima in their MIS 5e FCC and Sept. 291 SIC records (Figure 3), indicating a less variable WSIE in this sector compared to the Atlantic and Indian 292 sectors (Figure 3). The Pacific sector cores PC509 and ANTA91-8 are also the only cores in this study 293 which are covered by WSI for the entirety of MIS 5e (Figure 3 & 5). The position of these cores south 294 of the mean WSIE throughout MIS 5e is significant as they are the first published marine records from 295 within the seasonal sea ice zone and able to constrain the poleward limit of the MIS 5e minimum WSIE 296 (Chadwick et al., 2020). Cores ELT17-9 and NBP9802-04 are the only records in this study with average 297 MIS 5e Sept. SICs <15 % (Figure 5), indicating they were located north of the mean WSIE for the 298 majority of the 132-120 ka period, with core ELT17-9 having been located closer to the MIS 5e mean 299 WSIE. The FCC relative abundances for cores ELT17-9 and NBP9802-04 also indicate that both were 300 located on average north of the mean WSIE during MIS 5e (Figure 3) but suggest that core NBP9802-301 04 was located closer to the MIS 5e mean WSIE. 302 The reconstructed MIS 5e Sept. SICs for site ELT17-9 are higher than for site NBP9802-04 (Figure 3) 303 which is likely related to the higher abundance of Chaetoceros rs. in core ELT17-9 when compared to 304 core NBP9802-04 (Chadwick and Allen, 2021b, d). The Chaetoceros rs. group is associated with both 305 WSI (Armand et al., 2005) and meltwater stratification (Crosta et al., 1997), and it reached high 306 abundances in the Ross Sea during past interglacials (Kim et al., 2020). The high Chaetoceros rs. 307 abundance in core ELT17-9 during MIS 5e could therefore indicate an north-eastward shift of the Ross 308 Sea gyre from its modern day position (Dotto et al., 2018) and an accompanying displacement of 309 meltwater circulation (Merino et al., 2016) and the WSI edge in the Pacific sector. 310 The average MIS 5e SSSTs in the nine cores are ~1-2 °C warmer than the modern SSSTs (Figure 5), 311 consistent with the SST anomalies presented in Chadwick et al. (2020) and Capron et al. (2014). 312 However, the SSST records in the Atlantic and Indian sectors have large variability with maximum 313 SSSTs that are 2-4 °C higher than the MIS 5e average SSSTs (Figure 5). Maximum MIS 5e SSSTs in the 314 Atlantic and Indian sectors were therefore ~3-5 °C warmer than modern SSSTs (Figure 5), which is a 315 much larger SSST anomaly than the Antarctic Zone (south of the Antarctic Polar Front) records 316 presented in Chadwick et al. (2020), and marks a ~5 degrees latitude poleward shift in SSST isotherms 317 relative to the present. Unlike the Atlantic and Indian sectors, the Pacific sector core records indicate low variability in MIS 5e SSSTs with peak values 0-2 °C warmer than present (Figure 5) marking a 318 319 poleward shift in SSST isotherms of <3 degrees latitude.

Within their chronological uncertainties (Table 2), cores TPC288, TPC287, MD03-2603, ELT17-9, NBP9802-04 and PC509 all reach minimum MIS 5e Sept. SICs synchronously (Supplementary Table 1) and coincident with the peak in Antarctic air temperatures and minimum in EPICA Dome C (EDC) seasalt sodium flux (Nass) at $^{128 \pm 1.5}$ ka (Holloway et al., 2017; Wolff et al., 2006). The two Indian sector core records reach a minimum MIS 5e WSIE (and maximum SSST in core U1361A) $^{4.5}$ ka after the Nass minimum in Antarctic ice cores, outside of the combined chronological uncertainties of the sediment cores (Table 2) and AICC2012 ice core chronology (Bazin et al., 2013). Although the duration of the SSST maximum, and accompanying WSIE minimum, in core MD03-2603 is short, it occurs within chronological error of the maximum air temperatures in Antarctic ice cores (Figures 3 & 4).

Satellite era trends in Antarctic winter SIC (Hobbs et al., 2016) are largely consistent with the patterns observed during MIS 5e. Northern Weddell Sea winter SIC has declined by 5-10 % per decade in the

observed during MIS 5e. Northern Weddell Sea winter SIC has declined by 5-10 % per decade in the satellite era (Hobbs et al., 2016) indicating a sensitivity to warming consistent with the early retreat of MIS 5e sea ice in this region. Similarly, winter SICs in the Pacific sector have remained stable, or even slightly increased, during the satellite era (Hobbs et al., 2016) which is in agreement with the stability of the Pacific sector WSIE throughout MIS 5e. In recent decades, Bellingshausen Sea summer sea ice has decreased, whilst WSIE has stayed stable (Hobbs et al., 2016; Parkinson, 2019). The MIS 5e Sept. SICs and SSSTs (as a proxy for summer sea ice) imply that the MIS 5e WSIE in the Bellingshausen Sea is similar to the modern but the summer sea-ice extent was reduced. The western Ross Sea is a region in which the modern and MIS 5e trends differ, with recent winter SIC increases of 10-15 % per decade contrasting with the MIS 5e WSIE reduction observed at site NBP9802-04.

6. Conclusions & wider implications

During MIS 5e the three SO sectors display heterogeneous responses in WSIE and SSSTs, which may guide our predictions of the impact of future warming on the Antarctic region. The prominent early (131-130 ka) minimum in WSIE and coinciding maximum in SSSTs for the two southerly Atlantic sector cores (TPC288 and TPC287, Figure 3) is associated with a mean WSI edge located at least 3-5 ° south of its modern position. This substantial reduction in WSIE and seasonal sea-ice cover would have reduced brine rejection and likely decreased the rates of deep and bottom water formation in the Weddell Sea, causing a warming of the abyssal waters (Bouttes et al., 2010; Marzocchi and Jansen, 2019). Deep water warming would have promoted the basal melting and retreat of Weddell Sea ice shelves and marine terminating ice streams and caused substantial Antarctic ice sheet mass loss (Hellmer et al., 2012; Rignot et al., 2019; Wahlin et al., 2021). We hypothesise that substantial mass loss from the Weddell Sea sector drove the Atlantic sector WSI resurgence at ~126 \pm 2.6 ka and contributed to the global sea-level rise at this time (Kopp et al., 2013; Sime et al., 2019).

https://doi.org/10.5194/cp-2021-102 Preprint. Discussion started: 10 August 2021 © Author(s) 2021. CC BY 4.0 License.

353

354

355

356

357 358

359

360

361

362

363

364

365

366

367

368

369

370 371

372373

374

375

376

377

378

379

380

381 382

383

384 385

386

Variations in the WSIE and SSST records between the Indian sector cores MD03-2603 and U1361A are due to the differences in sampling resolution, with the MD03-2603 record indicating multiple relatively short duration WSIE and SSST oscillations during MIS 5e. The U1361A record seems to present an averaged signal of these oscillations with a greater frequency of warm periods with reduced WSIE after 125 ± 2.7 ka. Along the modern Wilkes Land margin the Antarctic Circumpolar Current (ACC) flows much closer to the continent than in other regions (Tamsitt et al., 2017) and the MIS 5e record in core MD03-2603 could therefore suggest multiple intervals when the ACC was displaced to the south of its modern position. A more southerly ACC in this region would have caused a poleward shift in precipitation fields and resulted in drier conditions across Southern Australia (Liu and Curry, 2010; Saunders et al., 2012), a trend that can already be observed under a modern warming climate (CSIRO, 2018). A southerly shift of the ACC would also increase the advection of warmer Circumpolar Deep Water onto the Antarctic continental shelf (Fogwill et al., 2014), promoting periods of high basal melting and ice sheet retreat in Wilkes Land during MIS 5e, as supported by Wilson et al. (2018).In contrast to the Atlantic and Indian sectors, the Pacific sector records indicate a more stable WSIE throughout MIS 5e. The MIS 5e Sept. SIC records of cores ELT17-9 and NBP9802-04 indicate a poleward shift in the mean WSI edge by at least 2 $^{\circ}$ of latitude relative to the modern. The PC509 record indicates a southerly shift in the mean WSI edge by <2 ° latitude, highlighting a seemingly greater resilience of sea ice in the Bellingshausen Sea with the WSI edge having remained north of 68 °S throughout MIS 5e. In the modern Pacific sector the WSIE is strongly constrained by the southern extent of the ACC and the shape of the Ross Sea gyre (Benz et al., 2016; Nghiem et al., 2016). An uneven poleward constriction of the ACC across the Pacific sector during MIS 5e could therefore help explain the differing WSI retreat in this region, with greater poleward migration of the ACC and reduction in the Ross Sea gyre extent in the western Pacific sector than in the eastern Pacific sector. However, unlike in the Indian sector, there is no evidence for millennial-scale migration of the ACC across the Pacific sector. The stable and persistent WSIE in the Pacific sector during MIS 5e may have protected ice shelves in the Ross, Amundsen and Bellingshausen seas which buttressed ice grounded further upstream (Massom et al., 2018). This buttressing may have acted as a stabilising factor for the West Antarctic Ice Sheet during MIS 5e, with the majority of its deep subglacial basins terminating in the Ross, Amundsen and Bellingshausen Seas (Gardner et al., 2018). The sensitivity of Weddell Sea WSI to warmer climates could have substantial implications for the SO biosphere given the high rates of primary productivity in this region today (Vernet et al., 2019). Whilst a future reduction in WSIE and increase in glacial meltwater flux would be expected to promote

primary productivity in the western part of the Weddell Sea (de Jong et al., 2012), the higher SSTs

387 would not favour key trophic intermediaries, e.g. Antarctic krill (Euphausia superba) (Atkinson et al., 2017; Siegel and Watkins, 2016), and would therefore negatively affect megafauna at higher trophic 388 389 levels (Hill et al., 2013). Future WSI edge retreat, at equivalent levels to MIS 5e, would also negatively 390 impact upon modern sea-ice obligate species, such as Emperor and Adélie Penguins (Cimino et al., 2013; Jenouvrier et al., 2005). 391 392 Similarly to the modern SO (Parkinson, 2019), WSIE trends during MIS 5e show both spatial and 393 temporal heterogeneity. The greater MIS 5e WSIE reduction in the Atlantic sector compared to the 394 Pacific sector is consistent with recent model simulations (Holloway et al., 2017). Most of the core 395 records in this study reach their minimum WSIE synchronously (within chronological uncertainties) 396 with the 128 ± 1.5 ka minimum in Antarctic ice core Nass flux (Wolff et al., 2006), with only cores TPC290 and U1361A indicating a later WSIE minimum (Figure 3 & Supplementary Figure 1). The 397 398 stability of the Pacific sector WSIE is likely due to the bathymetric pinning of the ACC limiting the 399 possible poleward displacement of the ACC during MIS 5e. The apparent high sensitivity of Weddell 400 Sea WSIE, and seeming resilience of Bellingshausen Sea WSIE, to warmer than present climates is 401 unexpected from the recent observational trends (Hobbs et al., 2016; Parkinson, 2019) and highlights 402 the importance of reconstructing palaeoenvironmental conditions around Antarctica during past 403 warm periods, such as MIS 5e, for understanding how the Antarctic and SO regions respond to warmer 404 climates on longer than decadal timescales.

Data availability

405

409

414

- 406 Full diatom count data for all samples are available from the NERC EDS UK Polar Data Centre (Chadwick
- 407 and Allen, 2021a, b, c, d, e, f, g, h, i). Sept. SIC and SSST data for all samples, produced using the MAT
- 408 transfer function, are available from PANGAEA (submitted, doi pending).

Author contribution

- 410 MC Data Curation, Investigation, Visualization, Writing original draft preparation; CA -
- 411 Conceptualization, Project administration, Resources, Supervision, Writing review & editing; LS –
- 412 Conceptualization, Supervision, Writing review & editing; XC Formal analysis, Methodology,
- 413 Resources, Writing review & editing; CDH Resources, Writing review & editing.

Competing interests

The authors declare they have no conflict of interest.

<u>Acknowledgements</u>

- 417 Funding for this work was provided by The Natural Environmental Research Council [grant number
- 418 NE/L002531/1]. The British Ocean Sediment Core Research Facility (BOSCORF) is thanked for supplying
- 419 sediment samples for core TPC287. We thank the Lamont-Doherty Core Repository of Lamont-Doherty
- 420 Earth Observatory for providing sediment sample material for core NBP9802-04 (IGSN DSR0003YW).
- 421 The International Ocean Discovery Program (IODP) is thanked for providing the sample material for
- 422 core U1361A. We also thank the Oregon State University Marine and Geology Repository for providing
- 423 sediment samples for core ELT17-9 and the Istituto de Scienze Marine for providing sediment samples
- 424 for core ANTA91-8.

425 References

- 426 Abernathey, R. P., Cerovecki, I., Holland, P. R., Newsom, E., Mazloff, M., and Talley, L. D.: Water-mass
- 427 transformation by sea ice in the upper branch of the Southern Ocean overturning, Nature
- 428 Geoscience, 9, 596-601, 2016.
- 429 Armand, L. and Leventer, A.: Palaeo sea ice distribution and reconstruction derived from the
- 430 geological records. In: Sea Ice, 2nd edition, Thomas, D. N. and Dieckmann, G. S. (Eds.), Wiley-
- 431 Blackwell, 2010.
- 432 Armand, L. K., Crosta, X., Romero, O., and Pichon, J.-J.: The biogeography of major diatom taxa in
- 433 Southern Ocean sediments: 1. Sea ice related species, Palaeogeography, Palaeoclimatology,
- 434 Palaeoecology, 223, 93-126, 2005.
- 435 Atkinson, A., Hill, S. L., Pakhomov, E. A., Siegel, V., Anadon, R., Chiba, S., Daly, K. L., Downie, R.,
- 436 Fielding, S., Fretwell, P., Gerrish, L., Hosie, G. W., Jessopp, M. J., Kawaguchi, S., Krafft, B. A., Loeb, V.,
- 437 Nishikawa, J., Peat, H. J., Reiss, C. S., Ross, R. M., Quetin, L. B., Schmidt, K., Steinberg, D. K.,
- 438 Subramaniam, R. C., Tarling, G. A., and Ward, P.: KRILLBASE: a circumpolar database of Antarctic krill
- and salp numerical densities, 1926–2016, Earth System Science Data, 9, 193-210, 2017.
- 440 Bareille, G., Grousset, F. E., Labracherie, M., Labeyrie, L. D., and Petit, J.-R.: Origin of detrital fluxes in
- 441 the southeast Indian Ocean during the last climatic cycles, Paleoceanography, 9, 799-819, 1994.
- Bazin, L., Landais, A., Lemieux-Dudon, B., Toyé Mahamadou Kele, H., Veres, D., Parrenin, F.,
- 443 Martinerie, P., Ritz, C., Capron, E., Lipenkov, V., Loutre, M. F., Raynaud, D., Vinther, B., Svensson, A.,
- 444 Rasmussen, S. O., Severi, M., Blunier, T., Leuenberger, M., Fischer, H., Masson-Delmotte, V.,
- 445 Chappellaz, J., and Wolff, E.: An optimized multi-proxy, multi-site Antarctic ice and gas orbital
- 446 chronology (AICC2012): 120-800 ka, Climate of the Past, 9, 1715-1731, 2013.
- 447 Benz, V., Esper, O., Gersonde, R., Lamy, F., and Tiedemann, R.: Last Glacial Maximum sea surface
- 448 temperature and sea-ice extent in the Pacific sector of the Southern Ocean, Quaternary Science
- 449 Reviews, 146, 216-237, 2016.
- 450 Bianchi, C. and Gersonde, R.: The Southern Ocean surface between Marine Isotope Stages 6 and 5d:
- 451 Shape and timing of climate changes, Palaeogeography, Palaeoclimatology, Palaeoecology, 187, 151-
- 452 177, 2002.

- 453 Bintanja, R., van Oldenborgh, G. J., Drijfhout, S. S., Wouters, B., and Katsman, C. A.: Important role
- 454 for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion, Nature Geoscience, 6,
- 455 376-379, 2013.
- 456 Bouttes, N., Paillard, D., and Roche, D. M.: Impact of brine-induced stratification on the glacial
- 457 carbon cycle, Climate of the Past, 6, 575-589, 2010.
- 458 Brambati, A., Melis, R., Quaia, T., and Salvi, G.: Late Quaternary climatic changes in the Ross Sea
- 459 area, Antarctica. In: Antarctica at the close of a Millenium, Gamble, J. A., Skinner, D. N. B., and
- 460 Henrys, S. (Eds.), Proceedings Volume 8th International Symposium on Antarctic Earth Sciences,
- 461 Royal Society of New Zealand Bulletin, 2002.
- 462 Burckle, L. H., Robinson, D., and Cooke, D.: Reappraisal of sea-ice distribution in Atlantic and Pacific
- 463 sectors of the Southern Ocean at 18,000 yr BP, Nature, 299, 435-437, 1982.
- 464 Capron, E., Govin, A., Feng, R., Otto-Bliesner, B. L., and Wolff, E. W.: Critical evaluation of climate
- 465 syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude
- 466 regions, Quaternary Science Reviews, 168, 137-150, 2017.
- 467 Capron, E., Govin, A., Stone, E. J., Masson-Delmotte, V., Mulitza, S., Otto-Bliesner, B., Rasmussen, T.
- 468 L., Sime, L. C., Waelbroeck, C., and Wolff, E. W.: Temporal and spatial structure of multi-millennial
- 469 temperature changes at high latitudes during the Last Interglacial, Quaternary Science Reviews, 103,
- 470 116-133, 2014.
- 471 Ceccaroni, L., Frank, M., Frignani, M., Langone, L., Ravaioli, M., and Mangini, A.: Late Quaternary
- 472 fluctuations of biogenic component fluxes on the continental slope of the Ross Sea, Antarctica,
- 473 Journal of Marine Systems, 17, 515-525, 1998.
- 474 Chadwick, M.: Southern Ocean surface sediment diatom abundances. In: Mendeley Data, Mendeley
- 475 Data, 2020.
- 476 Chadwick, M. and Allen, C. S.: Marine Isotope Stage 5e diatom assemblages in marine sediment core
- 477 ANTA91-8 (-70.78 °N, 172.83 °E, Cruise ANTA91) VERSION 2. NERC EDS UK Polar Data Centre,
- 478 2021a.
- 479 Chadwick, M. and Allen, C. S.: Marine Isotope Stage 5e diatom assemblages in marine sediment core
- 480 ELT17-9 (-63.08 °N, -135.12 °E, Cruise ELT17). UK Polar Data Centre, Natural Environment Research
- 481 Council, UK Research & Innovation, 2021b.
- 482 Chadwick, M. and Allen, C. S.: Marine Isotope Stage 5e diatom assemblages in marine sediment core
- 483 MD03-2603 (-64.28 °N, 139.38 °E, Cruise MD130) UK Polar Data Centre, Natural Environment
- 484 Research Council, UK Research & Innovation, 2021c.
- 485 Chadwick, M. and Allen, C. S.: Marine Isotope Stage 5e diatom assemblages in marine sediment core
- NBP9802-04 (-64.20 °N, -170.08 °E, Cruise PA9802) UK Polar Data Centre, Natural Environment
- 487 Research Council, UK Research & Innovation, 2021d.
- 488 Chadwick, M. and Allen, C. S.: Marine Isotope Stage 5e diatom assemblages in marine sediment core
- 489 PC509 (-68.31 °N, -86.03 °E, Cruise JR179). UK Polar Data Centre, Natural Environment Research
- 490 Council, UK Research & Innovation, 2021e.

- 491 Chadwick, M. and Allen, C. S.: Marine Isotope Stage 5e diatom assemblages in marine sediment core
- 492 TPC287 (-60.31 °N, -36.65 °E, Cruise JR48) UK Polar Data Centre, Natural Environment Research
- 493 Council, UK Research & Innovation, 2021f.
- 494 Chadwick, M. and Allen, C. S.: Marine Isotope Stage 5e diatom assemblages in marine sediment core
- 495 TPC288 (-59.14 °N, -37.96 °E, Cruise JR48) UK Polar Data Centre, Natural Environment Research
- 496 Council, UK Research & Innovation, 2021g.
- 497 Chadwick, M. and Allen, C. S.: Marine Isotope Stage 5e diatom assemblages in marine sediment core
- 498 TPC290 (-55.55 °N, -45.02 °E, Cruise JR48). UK Polar Data Centre, Natural Environment Research
- 499 Council, UK Research & Innovation, 2021h.
- 500 Chadwick, M. and Allen, C. S.: Marine Isotope Stage 5e diatom assemblages in marine sediment core
- 501 U1361A (-64.41 °N, 143.89 °E, IODP Exp. 318) UK Polar Data Centre, Natural Environment Research
- 502 Council, UK Research & Innovation, 2021i.
- 503 Chadwick, M., Allen, C. S., Sime, L. C., and Crosta, X.: How does the Southern Ocean
- 504 palaeoenvironment during MIS 5e compare to the modern?, Marine Micropaleontology, in review. in
- 505 review.
- 506 Chadwick, M., Allen, C. S., Sime, L. C., and Hillenbrand, C. D.: Analysing the timing of peak warming
- 507 and minimum winter sea-ice extent in the Southern Ocean during MIS 5e, Quaternary Science
- 508 Reviews, 229, 106134, 2020.
- 509 Chase, Z., Anderson, R. F., Fleisher, M. Q., and Kubik, P. W.: Accumulation of biogenic and lithogenic
- 510 material in the Pacific sector of the Southern Ocean during the past 40,000 years, Deep Sea Research
- Part II: Topical Studies in Oceanography, 50, 799-832, 2003.
- 512 Cimino, M. A., Fraser, W. R., Irwin, A. J., and Oliver, M. J.: Satellite data identify decadal trends in the
- 513 quality of Pygoscelis penguin chick-rearing habitat, Glob Chang Biol, 19, 136-148, 2013.
- 514 Cremer, H., Roberts, D., McMinn, A., Gore, D., and Melles, M.: The Holocene Diatom Flora of Marine
- Bays in the Windmill Islands, East Antarctica, Botanica Marina, 46, 82-106, 2003.
- 516 Crosta, X., Pichon, J.-J., and Labracherie, M.: Distribution of Chaetoceros resting spores in modern
- 517 peri-Antarctic sediments, Marine Micropaleontology, 29, 283-299, 1997.
- 518 Crosta, X., Romero, O., Armand, L. K., and Pichon, J.-J.: The biogeography of major diatom taxa in
- 519 Southern Ocean sediments: 2. Open ocean related species, Palaeogeography, Palaeoclimatology,
- 520 Palaeoecology, 223, 66-92, 2005.
- 521 Crosta, X., Shukla, S. K., Ther, O., Ikehara, M., Yamane, M., and Yokoyama, Y.: Last Abundant
- 522 Appearance Datum of Hemidiscus karstenii driven by climate change, Marine Micropaleontology,
- 523 157, 101861, 2020.
- 524 CSIRO: State of the Climate, Bureau of Meteorology, Australia, 1-24 pp., 2018.
- de Jong, J., Schoemann, V., Lannuzel, D., Croot, P., de Baar, H., and Tison, J.-L.: Natural iron
- 526 fertilization of the Atlantic sector of the Southern Ocean by continental shelf sources of the Antarctic
- 527 Peninsula, Journal of Geophysical Research: Biogeosciences, 117, 2012.

© Author(s) 2021. CC BY 4.0 License.

- 528 Dotto, T. S., Naveira Garabato, A., Bacon, S., Tsamados, M., Holland, P. R., Hooley, J., Frajka-Williams,
- 529 E., Ridout, A., and Meredith, M. P.: Variability of the Ross Gyre, Southern Ocean: Drivers and
- 530 Responses Revealed by Satellite Altimetry, Geophysical Research Letters, 45, 6195-6204, 2018.
- 531 Esper, O., Gersonde, R., and Kadagies, N.: Diatom distribution in southeastern Pacific surface
- 532 sediments and their relationship to modern environmental variables, Palaeogeography,
- Palaeoclimatology, Palaeoecology, 287, 1-27, 2010.
- 534 Ferreira, D., Marshall, J., Bitz, C. M., Solomon, S., and Plumb, A.: Antarctic Ocean and Sea Ice
- 535 Response to Ozone Depletion: A Two-Time-Scale Problem, Journal of Climate, 28, 1206-1226, 2015.
- 536 Fetterer, F., Knowles, K., Meier, W. N., Savoie, M., and Windnagel, A. K.: Sea Ice Index, Version 3.
- NSIDC: National Snow and Ice Data Center, Boulder, Colorado USA, 2017.
- Fischer, H., Meissner, K. J., Mix, A. C., Abram, N. J., Austermann, J., Brovkin, V., Capron, E.,
- 539 Colombaroli, D., Daniau, A.-L., Dyez, K. A., Felis, T., Finkelstein, S. A., Jaccard, S. L., McClymont, E. L.,
- 540 Rovere, A., Sutter, J., Wolff, E. W., Affolter, S., Bakker, P., Ballesteros-Cánovas, J. A., Barbante, C.,
- 541 Caley, T., Carlson, A. E., Churakova, O., Cortese, G., Cumming, B. F., Davis, B. A. S., de Vernal, A.,
- 542 Emile-Geay, J., Fritz, S. C., Gierz, P., Gottschalk, J., Holloway, M. D., Joos, F., Kucera, M., Loutre, M.-F.,
- 543 Lunt, D. J., Marcisz, K., Marlon, J. R., Martinez, P., Masson-Delmotte, V., Nehrbass-Ahles, C., Otto-
- 544 Bliesner, B. L., Raible, C. C., Risebrobakken, B., Sánchez Goñi, M. F., Arrigo, J. S., Sarnthein, M., Sjolte,
- 545 J., Stocker, T. F., Velasquez Alvárez, P. A., Tinner, W., Valdes, P. J., Vogel, H., Wanner, H., Yan, Q., Yu,
- 546 Z., Ziegler, M., and Zhou, L.: Palaeoclimate constraints on the impact of 2 °C anthropogenic warming
- and beyond, Nature Geoscience, 11, 474-485, 2018.
- 548 Fogwill, C. J., Turney, C. S. M., Meissner, K. J., Golledge, N. R., Spence, P., Roberts, J. L., England, M.
- 549 H., Jones, R. T., and Carter, L.: Testing the sensitivity of the East Antarctic Ice Sheet to Southern
- 550 Ocean dynamics: past changes and future implications, Journal of Quaternary Science, 29, 91-98,
- 551 2014.
- 552 Gardner, A. S., Moholdt, G., Scambos, T., Fahnstock, M., Ligtenberg, S., van den Broeke, M., and
- 553 Nilsson, J.: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7
- 554 years, The Cryosphere, 12, 521-547, 2018.
- Gersonde, R., Crosta, X., Abelmann, A., and Armand, L.: Sea-surface temperature and sea ice
- 556 distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view
- based on siliceous microfossil records, Quaternary Science Reviews, 24, 869-896, 2005.
- 558 Gersonde, R. and Zielinski, U.: The reconstruction of late Quaternary Antarctic sea-ice distribution—
- 559 the use of diatoms as a proxy for sea-ice, Palaeogeography, Palaeoclimatology, Palaeoecology, 162,
- 560 263-286, 2000.
- 561 Goosse, H. and Zunz, V.: Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-
- ocean feedback, The Cryosphere, 8, 453-470, 2014.
- 563 Govin, A., Braconnot, P., Capron, E., Cortijo, E., Duplessy, J. C., Jansen, E., Labeyrie, L., Landais, A.,
- 564 Marti, O., Michel, E., Mosquet, E., Risebrobakken, B., Swingedouw, D., and Waelbroeck, C.:
- Persistent influence of ice sheet melting on high northern latitude climate during the early Last
- Interglacial, Climate of the Past, 8, 483-507, 2012.
- 567 Govin, A., Capron, E., Tzedakis, P. C., Verheyden, S., Ghaleb, B., Hillaire-Marcel, C., St-Onge, G.,
- 568 Stoner, J. S., Bassinot, F., Bazin, L., Blunier, T., Combourieu-Nebout, N., El Ouahabi, A., Genty, D.,
- 569 Gersonde, R., Jimenez-Amat, P., Landais, A., Martrat, B., Masson-Delmotte, V., Parrenin, F.,

- 570 Seidenkrantz, M. S., Veres, D., Waelbroeck, C., and Zahn, R.: Sequence of events from the onset to
- 571 the demise of the Last Interglacial: Evaluating strengths and limitations of chronologies used in
- climatic archives, Quaternary Science Reviews, 129, 1-36, 2015.
- 573 Govin, A., Michel, E., Labeyrie, L., Waelbroeck, C., Dewilde, F., and Jansen, E.: Evidence for
- 574 northward expansion of Antarctic Bottom Water mass in the Southern Ocean during the last glacial
- inception, Paleoceanography, 24, PA1202, 2009.
- 576 Guiot, J. and de Vernal, A.: Is spatial autocorrelation introducing biases in the apparent accuracy of
- 577 paleoclimatic reconstructions?, Quaternary Science Reviews, 30, 1965-1972, 2011.
- 578 Hall, A.: The Role of Surface Albedo Feedback in Climate, Journal of Climate, 17, 1550-1568, 2004.
- 579 Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J., and Rae, J.: Twenty-first-century warming
- of a large Antarctic ice-shelf cavity by a redirected coastal current, Nature, 485, 225-228, 2012.
- Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horanyi, A., Munoz Sabater, J., Nicolas, J., Peubey, C.,
- Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thepaut, J.-N.: ERA5 monthly
- 583 averaged data on single levels from 1980 to 2019., Copernicus Climate Change Service (C3S) Climate
- 584 Data Store (CDS), 2019.
- 585 Hill, S. L., Phillips, T., and Atkinson, A.: Potential Climate Change Effects on the Habitat of Antarctic
- Krill in the Weddell Quadrant of the Southern Ocean, PLoS One, 8, e72246, 2013.
- 587 Hobbs, W. R., Massom, R., Stammerjohn, S., Reid, P., Williams, G., and Meier, W.: A review of recent
- 588 changes in Southern Ocean sea ice, their drivers and forcings, Global and Planetary Change, 143,
- 589 228-250, 2016.
- 590 Holloway, M. D., Sime, L. C., Allen, C. S., Hillenbrand, C.-D., Bunch, P., Wolff, E., and Valdes, P. J.: The
- 591 spatial structure of the 128 ka Antarctic sea ice minimum, Geophysical Research Letters, 44, 11129-
- 592 11139, 2017.
- 593 Holloway, M. D., Sime, L. C., Singarayer, J. S., Tindall, J. C., and Valdes, P. J.: Simulating the 128-ka
- 594 Antarctic Climate Response to Northern Hemisphere Ice Sheet Melting Using the Isotope-Enabled
- 595 HadCM3, Geophysical Research Letters, 45, 11,921-911,929, 2018.
- 596 IPCC: Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing
- 597 Climate, Portner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E.,
- 598 Mintenbeck, K., Alegria, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyers, N. M. (Eds.),
- 599 2019.
- 600 Jenouvrier, S., Barbraud, C., and Weimerskirch, H.: Long-term contrasted responses to climate of two
- Antarctic seabird species, Ecology, 86, 2889-2903, 2005.
- 602 Kim, S., Lee, J. I., McKay, R. M., Yoo, K.-C., Bak, Y.-S., Lee, M. K., Roh, Y. H., Yoon, H. I., Moon, H. S.,
- 603 and Hyun, C.-U.: Late pleistocene paleoceanographic changes in the Ross Sea Glacial-interglacial
- variations in paleoproductivity, nutrient utilization, and deep-water formation, Quaternary Science
- 605 Reviews, 239, 106356, 2020.
- King, J.: A resolution of the Antarctic paradox, Nature, 505, 491-492, 2014.
- 607 Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M.: Probabilistic
- assessment of sea level during the last interglacial stage, Nature, 462, 863-867, 2009.

- 609 Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M.: A probabilistic
- assessment of sea level variations within the last interglacial stage, Geophysical Journal
- 611 International, 193, 711-716, 2013.
- 612 Lisiecki, L. E. and Raymo, M. E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O
- 613 records, Paleoceanography, 20, PA1003, 2005.
- 614 Liu, J. and Curry, J. A.: Accelerated warming of the Southern Ocean and its impacts on the
- 615 hydrological cycle and sea ice, Proc Natl Acad Sci U S A, 107, 14987-14992, 2010.
- 616 Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M.
- 617 M., Paver, C. R., Reagan, J. R., Johnson, D. R., Hamilton, M., and Seidov, D.: World Ocean atlas 2013,
- 618 volume 1: Temperature, 2013.
- 619 Maksym, T.: Arctic and Antarctic Sea Ice Change: Contrasts, Commonalities, and Causes, Ann Rev
- 620 Mar Sci, 11, 187-213, 2019.
- 621 Marzocchi, A. and Jansen, M. F.: Global cooling linked to increased glacial carbon storage via changes
- in Antarctic sea ice, Nature Geoscience, 12, 1001-1005, 2019.
- 623 Massom, R. A., Scambos, T. A., Bennetts, L. G., Reid, P., Squire, V. A., and Stammerjohn, S. E.:
- 624 Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell, Nature, 558, 383-389,
- 625 2018.
- 626 Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G.,
- 627 Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., and Schuur,
- 628 E. A. G.: Polar Regions. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
- 629 Portner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck,
- 630 K., Alegria, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyers, N. M. (Eds.), 2019.
- 631 Merino, N., Jourdain, N. C., Le Sommer, J., Goosse, H., Mathiot, P., and Durand, G.: Impact of
- 632 increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean,
- 633 Ocean Modelling, 121, 76-89, 2018.
- Merino, N., Le Sommer, J., Durand, G., Jourdain, N. C., Madec, G., Mathiot, P., and Tournadre, J.:
- 635 Antarctic icebergs melt over the Southern Ocean: Climatology and impact on sea ice, Ocean
- 636 Modelling, 104, 99-110, 2016.
- 637 Nghiem, S. V., Rigor, I. G., Clemente-Colón, P., Neumann, G., and Li, P. P.: Geophysical constraints on
- the Antarctic sea ice cover, Remote Sensing of Environment, 181, 281-292, 2016.
- 639 Paillard, D., Labeyrie, L., and Yiou, P.: Macintosh program performs time-series analysis, Eos, 77, 379,
- 640 1996.
- 641 Parkinson, C. L.: A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at
- rates far exceeding the rates seen in the Arctic, Proc Natl Acad Sci USA, 116, 14414-14423, 2019.
- 643 Parrenin, F., Masson-Delmotte, V., Kohler, P., Raynaud, D., Paillard, D., Schwander, J., Barbante, C.,
- 644 Landais, A., Wegner, A., and Jouzel, J.: Synchronisation of the LR04 stack with EDC isotopic variations
- on the EDC3 age scale. In: PANGAEA, 2013.

- 646 Presti, M., Barbara, L., Denis, D., Schmidt, S., De Santis, L., and Crosta, X.: Sediment delivery and
- 647 depositional patterns off Adélie Land (East Antarctica) in relation to late Quaternary climatic cycles,
- 648 Marine Geology, 284, 96-113, 2011.
- 649 Pugh, R. S., McCave, I. N., Hillenbrand, C. D., and Kuhn, G.: Circum-Antarctic age modelling of
- 650 Quaternary marine cores under the Antarctic Circumpolar Current: Ice-core dust-magnetic
- 651 correlation, Earth and Planetary Science Letters, 284, 113-123, 2009.
- 652 Purich, A., England, M. H., Cai, W., Chikamoto, Y., Timmermann, A., Fyfe, J. C., Frankcombe, L.,
- 653 Meehl, G. A., and Arblaster, J. M.: Tropical Pacific SST Drivers of Recent Antarctic Sea Ice Trends,
- 654 Journal of Climate, 29, 8931-8948, 2016.
- 655 Rignot, E., Mouginot, J., Scheuchl, B., van den Broeke, M., van Wessem, M. J., and Morlighem, M.:
- 656 Four decades of Antarctic Ice Sheet mass balance from 1979-2017, Proc Natl Acad Sci U S A, 116,
- 657 1095-1103, 2019.
- 658 Rintoul, S. R.: The global influence of localized dynamics in the Southern Ocean, Nature, 558, 209-
- 659 218, 2018.
- 660 Romero, O. E., Armand, L. K., Crosta, X., and Pichon, J. J.: The biogeography of major diatom taxa in
- 661 Southern Ocean surface sediments: 3. Tropical/Subtropical species, Palaeogeography,
- Palaeoclimatology, Palaeoecology, 223, 49-65, 2005.
- 663 Rosenblum, E. and Eisenman, I.: Sea Ice Trends in Climate Models Only Accurate in Runs with Biased
- Global Warming, Journal of Climate, 30, 6265-6278, 2017.
- Rysgaard, S., Bendtsen, J., Delille, B., Dieckmann, G. S., Glud, R. N., Kennedy, H., Mortensen, J.,
- Papadimitriou, S., Thomas, D. N., and Tison, J.-L.: Sea ice contribution to the air–sea CO2 exchange in
- the Arctic and Southern Oceans, Tellus B: Chemical and Physical Meteorology, 63, 823-830, 2011.
- 668 Saunders, K. M., Kamenik, C., Hodgson, D. A., Hunziker, S., Siffert, L., Fischer, D., Fujak, M., Gibson, J.
- 669 A. E., and Grosjean, M.: Late Holocene changes in precipitation in northwest Tasmania and their
- 670 potential links to shifts in the Southern Hemisphere westerly winds, Global and Planetary Change,
- 671 92-93, 82-91, 2012.
- 672 Scherer, R. P.: A new method for the determination of absolute abundance of diatoms and other silt-
- 673 sized sedimentary particles, Journal of Paleolimnology, 12, 171-179, 1994.
- 674 Schweitzer, P. N.: Monthly average polar sea-ice concentration 1978 through 1991. In: U.S.
- 675 Geological Survey Digital Data Series DDS-27, U.S. Geological Survey, Reston, Virginia, 1995.
- 676 Shukla, S. K., Crosta, X., and Ikehara, M.: Sea Surface Temperatures in the Indian Sub-Antarctic
- 677 Southern Ocean for the Last Four Interglacial Periods, Geophysical Research Letters, 48, 2021.
- 678 Siegel, V. and Watkins, J. L.: Distribution, Biomass and Demography of Antarctic Krill, Euphausia
- 679 superba. In: Biology and Ecology of Antarctic krill, Siegel, V. (Ed.), Advances in Polar Ecology, 2016.
- 680 Sime, L. C., Carlson, A. E., and Holloway, M. D.: On recovering Last Interglacial changes in the
- Antarctic ice sheet, Past Global Changes Magazine, 27, 14-15, 2019.
- 682 Simpson, G.: Analogue Methods in Palaeoecology: Using the analogue Package, Journal of Statistical
- 683 Software, 22, i02, 2007.

- 684 Stammerjohn, S. E., Martinson, D. G., Smith, R. C., Yuan, X., and Rind, D.: Trends in Antarctic annual
- 685 sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular
- Mode variability, Journal of Geophysical Research, 113, C03S90, 2008.
- 687 Stone, E. J., Capron, E., Lunt, D. J., Payne, A. J., Singarayer, J. S., Valdes, P. J., and Wolff, E. W.: Impact
- 688 of meltwater on high-latitude early Last Interglacial climate, Climate of the Past, 12, 1919-1932,
- 689 2016.
- 690 Tamsitt, V., Drake, H. F., Morrison, A. K., Talley, L. D., Dufour, C. O., Gray, A. R., Griffies, S. M.,
- 691 Mazloff, M. R., Sarmiento, J. L., Wang, J., and Weijer, W.: Spiraling pathways of global deep waters to
- the surface of the Southern Ocean, Nat Commun, 8, 172, 2017.
- 693 Thomas, E. R., Allen, C. S., Etourneau, J., King, A. C. F., Severi, M., Winton, V. H. L., Mueller, J., Crosta,
- 694 X., and Peck, V. L.: Antarctic Sea Ice Proxies from Marine and Ice Core Archives Suitable for
- Reconstructing Sea Ice over the Past 2000 Years, Geosciences, 9, 506, 2019.
- 696 Trathan, P. N., Brandon, M. A., Murphy, E. J., and Thorpe, S. E.: Transport and structure within the
- 697 Antarctic Circumpolar Current to the north of south Georgia, Geophysical Research Letters, 27,
- 698 1727-1730, 2000.
- 699 Turney, C. S. M., Fogwill, C. J., Golledge, N. R., McKay, N. P., van Sebille, E., Jones, R. T., Etheridge, D.,
- 700 Rubino, M., Thornton, D. P., Davies, S. M., Ramsey, C. B., Thomas, Z. A., Bird, M. I., Munksgaard, N.
- 701 C., Kohno, M., Woodward, J., Winter, K., Weyrich, L. S., Rootes, C. M., Millman, H., Albert, P. G.,
- Rivera, A., van Ommen, T., Curran, M., Moy, A., Rahmstorf, S., Kawamura, K., Hillenbrand, C. D.,
- 703 Weber, M. E., Manning, C. J., Young, J., and Cooper, A.: Early Last Interglacial ocean warming drove
- substantial ice mass loss from Antarctica, Proc Natl Acad Sci U S A, 117, 3996-4006, 2020.
- 705 Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F.,
- 706 Martinerie, P., Blayo, E., Blunier, T., Capron, E., Chappellaz, J., Rasmussen, S. O., Severi, M.,
- 707 Svensson, A., Vinther, B., and Wolff, E. W.: The Antarctic ice core chronology (AICC2012): an
- 708 optimized multi-parameter and multi-site dating approach for the last 120 thousand years, Climate
- 709 of the Past, 9, 1733-1748, 2013.
- 710 Vernet, M., Geibert, W., Hoppema, M., Brown, P. J., Haas, C., Hellmer, H. H., Jokat, W., Jullion, L.,
- 711 Mazloff, M., Bakker, D. C. E., Brearley, J. A., Croot, P., Hattermann, T., Hauck, J., Hillenbrand, C. D.,
- 712 Hoppe, C. J. M., Huhn, O., Koch, B. P., Lechtenfeld, O. J., Meredith, M. P., Naveira Garabato, A. C.,
- Nöthig, E. M., Peeken, I., Rutgers van der Loeff, M. M., Schmidtko, S., Schröder, M., Strass, V. H.,
- 714 Torres-Valdés, S., and Verdy, A.: The Weddell Gyre, Southern Ocean: Present Knowledge and Future
- 715 Challenges, Reviews of Geophysics, 57, 623-708, 2019.
- 716 von Quillfeldt, C.: The diatom Fragilariopsis cylindrus and its potential as an indicator species for cold
- 717 water rather than for sea ice, Vie et Milieu / Life & Environment, 54, 137-143, 2004.
- 718 Wahlin, A. K., Graham, A. G. C., Hogan, K. A., Queste, B. Y., Boehme, L., Larter, R. D., Pettit, E. C.,
- 719 Wellner, J., and Heywood, K. J.: Pathways and modification of warm water flowing beneath Thwaites
- 720 Ice Shelf, West Antarctica, Science Advances, 7, eabd7254, 2021.
- 721 Walter, H. J., Hegner, E., Diekmann, B., Kuhn, G., and Rutgers van der Loeff, M. M.: Provenance and
- 722 transport of terrigenous sediment in the South Atlantic Ocean and their relations to glacial and
- 723 interglacial cycles: Nd and Sr isotopic evidence, Geochimica et Cosmochimica Acta, 64, 3813-3827,
- 724 2000.

© Author(s) 2021. CC BY 4.0 License.

- 725 Williams, T.: Investigating the circulation of Southern Ocean deep water masses over the last 1.5
- 726 million years by geochemical fingerprinting of marine sediments, PhD, Department of Earth Sciences,
- 727 University of Cambridge, UK, 210 pp., 2017.
- 728 Wilson, D. J., Bertram, R. A., Needham, E. F., van de Flierdt, T., Welsh, K. J., McKay, R. M., Mazumder,
- 729 A., Riesselman, C. R., Jimenez-Espejo, F. J., and Escutia, C.: Ice loss from the East Antarctic Ice Sheet
- 730 during late Pleistocene interglacials, Nature, 561, 383-386, 2018.
- 731 Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G. C., Mulvaney, R., Rothlisberger,
- 732 R., de Angelis, M., Boutron, C. F., Hansson, M., Jonsell, U., Hutterli, M. A., Lambert, F., Kaufmann, P.,
- 733 Stauffer, B., Stocker, T. F., Steffensen, J. P., Bigler, M., Siggaard-Andersen, M. L., Udisti, R., Becagli, S.,
- Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli, P., and Gaspari, V.: Southern Ocean
- 735 sea-ice extent, productivity and iron flux over the past eight glacial cycles, Nature, 440, 491-496,
- 736 2006.
- 737 Zielinski, U., Bianchi, C., Gersonde, R., and Kunz-Pirrung, M.: Last occurrence datums of the diatoms
- 738 Rouxia leventerae and Rouxia constricta: indicators for marine isotope stages 6 and 8 in Southern
- 739 Ocean sediments, Marine Micropaleontology, 46, 127-137, 2002.
- 740 Zielinski, U. and Gersonde, R.: Diatom distribution in Southern Ocean surface sediments (Atlantic
- 741 sector): Implications for paleoenvironmental reconstructions, Palaeogeography, Palaeoclimatology,
- 742 Palaeoecology, 129, 213-250, 1997.
- 743 Zwally, H. J., Comiso, J. C., Parkinson, C. L., Cavalieri, D. J., and Gloersen, P.: Variability of Antarctic
- sea ice 1979–1998, Journal of Geophysical Research, 107, 2002.

745